ОСТАНОВИТЬ МЕТАСТАЗЫ

 Работа научного коллектива из США (2011-2012), в основу которой положены выводы мировых исследований по влиянию продуктов питания и других веществ и способов на метастазирование опухолей.

 

Впервые в одной работе были собраны выводы из более 150 исследований, показавших КАК МОЖНО ОСТАНОВИТЬ МЕТАСТАЗЫ С ПОМОЩЬЮ ПРОДУКТОВ ПИТАНИЯ.

Руководитель исследования  GaryMeadows, Ph.D.

Dorothy Otto Kennedy Distinguished Professor
Pharmaceutical Sciences

Кандидат фармацевтических наук, университет Вашингтона

Степень Магистра наук в области фармацевтики, университет штата Айдахо


509-335-4753 
Washington State University http://www.pharmacy.wsu.edu/facultystaff/bios/meadows.g.html

 

Работа опубликована издательством SPRINGER и ее можно купить на сайте издательства на языке оригинала за 39,95$

(www.springer.com)

http://www.ncbi.nlm.nih.gov/pubmed/22692480

http://www.sciencedaily.com/releases/2012/08/120827152050.htm

http://www.medicalnewstoday.com/releases/249570.php

ПРИМЕР ПЕРЕВОДА

Аннотация

Главным фактором заболеваемости и смертности у раковых больных является метастазы. Отмечается относительное отсутствие специфических терапевтических методов для контроля над метастазом, поэтому данное направление исследований является многообещающим. Правильное питание и здоровый образ жизни не только помогают ингибировать онкогенез, но и оказывают существенное влияние на прогрессирование рака и выживание больного. Известно, что многие химические вещества, содержащиеся в пригодных  в пищу растениях, ингибируют метастатическое прогрессирование рака. В то время как определяются механизмы, лежащие в основе противометастатической деятельности ряда фитохимических соединений, роль диеты, питательных веществ и различных фитохимических веществ в генах-супрессорах метастаза остается недостаточно исследованной. Эпигенетическая регуляция генов-супрессоров метастаза может оказаться важным механизмом, с помощью которого питательные вещества влияют на раковый метастаз, поскольку установлено, что многие из них модулируют экспрессию генов. В данном обзоре речь идет об этом направлении в исследованиях, а также описываются имеющиеся знания относительно роли диеты, питательных компонентов и фитохимических веществ в деятельности генов-супрессоров метастаза.  

ПРИРОДА ПРОТИВ РАКА

ПРЕДОСТАВЛЯЕТ ПЕРЕВОД ИССЛЕДОВАНИЯ

Пожертвуйте 500 руб. на поддержку сайта и сообщите о своем платеже по E-mail: [email protected] 

Счет пожертвования - 41001776367259 в Яндекс-Деньги

В ответном письме получите перевод и само исследование на английском языке..

МЕТАСТАЗИРОВАНИЕ РАКОВЫХ ОПУХОЛЕЙ - КАК ЭТО ПРОИСХОДИТ

ИСТОЧНИКИ ИНФОРМАЦИИ ДЛЯ ИССЛЕДОВАНИЯ

1. Aravindaram, K., & Yang, N. S. (2010). Anti-inflammatory plant natural products for cancer therapy. Planta Medica, 76(11), 1103–1117. doi:10.1055/s-0030-1249859.


2. Niedzwiecki, A., Roomi, M. W., Kalinovsky, T., & Rath, M. (2010). Micronutrient synergy—a new tool in effective control of metastasis and other key mechanisms of cancer. Cancer and Metastasis Reviews, 29(3), 529–542. doi:10.1007/s10555-010- 9244-1


3. Chahar, M. K., Sharma, N., Dobhal, M. P., & Joshi, Y. C. (2011). Flavonoids: a versatile source of anticancer drugs. Pharmacognosy Reviews, 5(9), 1–12. doi:10.4103/0973-7847.79093PRev-5-1.


4. Meeran, S. M., Ahmed, A., & Tollefsbol, T. O. (2010). Epigenetic targets of bioactive dietary components for cancer prevention and therapy. Clinica Epigenetics, 1(3–4), 101–116. doi:10.1007/ s13148-010-0011-5.


5. Prasad, S., Phromnoi, K., Yadav, V. R., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Targeting inflammatory pathways by flavonoids for prevention and treatment of cancer. Planta Medica, 76(11), 1044–1063. doi:10.1055/s-0030-1250111.


6. Gupta, S. C., Kim, J. H., Prasad, S., & Aggarwal, B. B. (2010). Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer and Metastasis Reviews, 29 (3), 405–434. doi:10.1007/s10555-010-9235-2.


7. Bertola, A., Deveaux, V., Bonnafous, S., Rousseau, D., Anty, R., Wakkach, A., et al. (2009). Elevated expression of osteopontin may be related to adipose tissue macrophage accumulation and liver steatosis in morbid obesity. Diabetes, 58(1), 125–133. doi:10.2337/db08-0400.


8. Milagro, F. I., Campion, J., Cordero, P., Goyenechea, E., Gomez�Uriz, A. M., Abete, I., et al. (2011). A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. The FASEB Journal, 25(4), 1378– 1389. doi:10.1096/fj.10-170365.


9. Fernandez-Twinn, D. S., Ekizoglou, S., Martin-Gronert, M. S., Tarry-Adkins, J., Wayman, A. P., Warner, M. J., et al. (2010). Poor early growth and excessive adult calorie intake indepen�dently and additively affect mitogenic signaling and increase mammary tumor susceptibility. Carcinogenesis, 31(10), 1873– 1881. doi:10.1093/carcin/bgq095.


10. Duthie, S. J. (2011). Epigenetic modifications and human pathol�ogies: cancer and CVD. Proceedings of the Nutrition Society, 70 (1), 47–56. doi:10.1017/S0029665110003952.


11. Balter, K., Moller, E., & Fondell, E. (2012). The effect of dietary guidelines on cancer risk and mortality. Current Opinion in Oncology, 24(1), 90–102. doi:10.1097/CCO. 0b013e32834e053100001622-201201000-00016.


12. Shoushtari, A. N., Szmulewitz, R. Z., & Rinker-Schaeffer, C. W. (2011). Metastasis-suppressor genes in clinical practice: lost in translation? Nature Reviews. Clinical Oncology, 8(6), 333–342. doi:10.1038/nrclinonc.2011.65.


13. Stafford, L. J., Vaidya, K. S., & Welch, D. R. (2008). Metastasis suppressors genes in cancer. The International Journal of Bio�chemistry & Cell Biology, 40(5), 874–891. doi:10.1016/j. biocel.2007.12.016.


14. Yi, Y., Nandana, S., Case, T., Nelson, C., Radmilovic, T., Matusik, R. J., et al. (2009). Candidate metastasis suppressor genes uncov�ered by array comparative genomic hybridization in a mouse allo�graft model of prostate cancer. Molecular Cytogenetics, 2, 18. doi:10.1186/1755-8166-2-18.


15. Bouwman, F. G., de Roos, B., Rubio-Aliaga, I., Crosley, L. K., Duthie, S. J., Mayer, C., et al. (2011). 2D-electrophoresis and multiplex immunoassay proteomic analysis of different body fluids and cellular components reveal known and novel markers for extended fasting. BMC Medical Genomics, 4, 24. doi:10.1186/1755-8794-4-24.


16. Yang, M. D., Lai, K. C., Lai, T. Y., Hsu, S. C., Kuo, C. L., Yu, C. S., et al. (2010). Phenethyl isothiocyanate inhibits migration and inva�sion of human gastric cancer AGS cells through suppressing MAPK and NF-kappaB signal pathways. Anticancer Research, 30(6), 2135– 2143.


17. Ho, C. C., Lai, K. C., Hsu, S. C., Kuo, C. L., Ma, C. Y., Lin, M. L., et al. (2011). Benzyl isothiocyanate (BITC) inhibits migration and invasion of human gastric cancer AGS cells via suppressing ERK signal pathways. Human and Experimental Toxicology, 30 (4), 296–306. doi:10.1177/0960327110371991


18. Wong, A. W., Paulson, Q. X., Hong, J., Stubbins, R. E., Poh, K., Schrader, E., et al. (2011). Alcohol promotes breast cancer cell invasion by regulating the Nm23-ITGA5 pathway. Journal of Experimental & Clinical Cancer Research, 30, 75. doi:10.1186/ 1756-9966-30-75.


19. Kato, K., Long, N. K., Makita, H., Toida, M., Yamashita, T., Hatakeyama, D., et al. (2008). Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. British Journal of Cancer, 99(4), 647–654. doi:10.1038/sj.bjc.6604521.


20. Kushiro, K., & Nunez, N. P. (2012). Ethanol inhibits B16-BL6 melanoma metastasis and cell phenotypes associated with metas�tasis. In Vivo, 26(1), 47–58.


21. Hickson, J. A., Huo, D., Vander Griend, D. J., Lin, A., Rinker�Schaeffer, C. W., & Yamada, S. D. (2006). The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Research, 66(4), 2264–2270. doi:10.1158/0008-5472.CAN-05-3676.


22. Herner, A., Sauliunaite, D., Michalski, C. W., Erkan, M., De Oliveira, T., Abiatari, I., et al. (2011). Glutamate increases pan�creatic cancer cell invasion and migration via AMPA receptor activation and Kras-MAPK signaling. International Journal of Cancer, 129(10), 2349–2359. doi:10.1002/ijc.25898.


23. Barthomeuf, C. (2007). Inhibition of S1P-induced angiogen�esis, metastasis and inflammation by dietary polyphenols. Free Radical Biology & Medicine, 42(2), 312–313. doi:10.1016/j.freeradbiomed.2006.11.002.


24. Chien, S. T., Lin, S. S., Wang, C. K., Lee, Y. B., Chen, K. S., Fong, Y., et al. (2011). Acacetin inhibits the invasion and migra�tion of human non-small cell lung cancer A549 cells by suppress�ing the p38alpha MAPK signaling pathway. Molecular and Cellular Biochemistry, 350(1–2), 135–148. doi:10.1007/s11010- 010-0692-2.


25. Wang, L., Kuang, L., Pan, X., Liu, J., Wang, Q., Du, B., et al. (2010). Isoalvaxanthone inhibits colon cancer cell proliferation, migration and invasion through inactivating Rac1 and AP-1. International Journal of Cancer, 127(5), 1220–1229. doi:10.1002/ijc.25119.


26. Huang, X., Chen, S., Xu, L., Liu, Y., Deb, D. K., Platanias, L. C., et al. (2005). Genistein inhibits p38 map kinase activation, matrix metalloproteinase type 2, and cell invasion in human prostate epithelial cells. Cancer Research, 65(8), 3470–3478. doi:10.1158/0008-5472.CAN-04-2807.


27. Fu, Y. M., & Meadows, G. G. (2007). Specific amino acid dependency regulates the cellular behavior of melanoma. Journal of Nutrition, 137(6 Suppl 1), 1591S–1596S. discussion 1597S- 1598S.


28. Lamy, V., Bousserouel, S., Gosse, F., Minker, C., Lobstein, A., & Raul, F. (2011). Lupulone triggers p38 MAPK-controlled activa�tion of p53 and of the TRAIL receptor apoptotic pathway in human colon cancer-derived metastatic cells. Oncology Reports, 26(1), 109–114. doi:10.3892/or.2011.1273.


29. Ferguson, H. J., & Bhalerao, S. (2010). Gallbladder torsion presenting as chest pain. Annals of the Royal College of Surgeons of England, 92(3), W252–W256. doi:10.1308/ 147870810X12659688851357.


30. Ho, Y. T., Yang, J. S., Li, T. C., Lin, J. J., Lin, J. G., Lai, K. C., et al. (2009). Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-kappaB, u-PA and MMP-2 and -9. Cancer Letters, 279(2), 155–162. doi:10.1016/j.canlet.2009.01.033.


31. Senthilkumar, K., Arunkumar, R., Elumalai, P., Sharmila, G., Gunadharini, D. N., Banudevi, S., et al. (2011). Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochemistry and Function, 29(2), 87–95. doi:10.1002/cbf.1725


32. Park, K. R., Nam, D., Yun, H. M., Lee, S. G., Jang, H. J., Sethi, G., et al. (2011). beta-Caryophyllene oxide inhibits growth and induces apoptosis through the suppression of PI3K/AKT/mTOR/ S6K1 pathways and ROS-mediated MAPKs activation. Cancer Letters, 312(2), 178–188. doi:10.1016/j.canlet.2011.08.001.


33. Xu, L., Ding, Y., Catalona, W. J., Yang, X. J., Anderson, W. F., Jovanovic, B., et al. (2009). MEK4 function, genistein treatment, and invasion of human prostate cancer cells. Journal of the National Cancer Institute, 101(16), 1141–1155. doi:10.1093/ jnci/djp227.


34. Meadows, G. G., Zhang, H., & Ge, X. (2001). Specific amino acid deficiency alters the expression of genes in human melano�ma and other tumor cell lines. Journal of Nutrition, 131, 3047S– 3050S.


35. Meadows, G. G., Ge, X., Zhang, H., Oros, D. R., & Fu, Y.-M. (2002). Inhibition of invasion and metastasis during specific amino acid restriction associated with metastasis suppressor and other gene changes. In D. R. Welch (Ed.), Cancer metastasis— related genes (pp. 191–208, Cancer metastasis—biology and treatment, vol. 3). Dordrecht: Kluwer Academic.


36. Abdallah, R. M., Starkey, J. R., & Meadows, G. G. (1987). Dietary restriction of tyrosine and phenylalanine: inhibition of metastasis of three rodent tumors. Journal of the National Cancer Institute, 78, 759–766.


37. Issa, J. P. (2008). Cancer prevention: epigenetics steps up to the plate. Cancer Prevention Research (Philadelphia, Pa.), 1(4), 219–222. doi:10.1158/1940-6207.CAPR-08-0029.


38. Herceg, Z. (2007). Epigenetics and cancer: towards an evaluation of the impact of environmental and dietary factors. Mutagenesis, 22(2), 91–103. doi:10.1093/mutage/gel068.


39. Szyf, M. (2006). Targeting DNA methylation in cancer. Bulletin du Cancer, 93(9), 961–972.


40. Parasramka, M. A., Ho, E., Williams, D. E., & Dashwood, R. H. (2012). MicroRNAs, diet, and cancer: new mechanistic insights on the epigenetic actions of phytochemicals. Molecular Carcino�genesis, 51(3), 213–230. doi:10.1002/mc.20822.


41. Khan, S. I., Aumsuwan, P., Khan, I. A., Walker, L. A., & Dasmahapatra, A. K. (2012). Epigenetic events associated with breast cancer and their prevention by dietary compo�nents targeting the epigenome. Chemical Research in Toxi�cology, 25(1), 61–73. doi:10.1021/tx200378c.


42. Druesne-Pecollo, N., & Latino-Martel, P. (2011). Modulation of histone acetylation by garlic sulfur compounds. Anti-Cancer Agents in Medicinal Chemistry, 11(3), 254–259.


43. Davis, C. D., & Ross, S. A. (2007). Dietary components impact histone modifications and cancer risk. Nutrition Reviews, 65(2), 88–94.


44. Chimonidou, M., Strati, A., Tzitzira, A., Sotiropoulou, G., Malamos, N., Georgoulias, V., et al. (2011). DNA methyla�tion of tumor suppressor and metastasis suppressor genes in circulating tumor cells. Clinical Chemistry, 57(8), 1169– 1177. doi:10.1373/clinchem.2011.165902.


45. Hartsough, M. T., Clare, S. E., Mair, M., Elkahloun, A. G., Sgroi, D., Osborne, C. K., et al. (2001). Elevation of breast carcinoma Nm23-H1 metastasis suppressor gene expression and reduced motility by DNA methylation inhibition. Cancer Research, 61 (5), 2320–2327.


46. Li, Q., & Chen, H. (2011). Epigenetic modifications of metastasis suppressor genes in colon cancer metastasis. Epigenetics, 6(7), 849–852. doi:10.4161/epi.6.7.16314.


47. Desrochers, T. M., Shamis, Y., Alt-Holland, A., Kudo, Y., Takata, T., Wang, G., et al. (2012). The 3D tissue microenvironment modulates DNA methylation and E-cadherin expression in squamous cell carcinoma. Epigenetics, 7(1), 34–46. doi:10.4161/ epi.7.118546


48. Cebrian, V., Fierro, M., Orenes-Pinero, E., Grau, L., Moya, P., Ecke, T., et al. (2011). KISS1 methylation and expression as tumor stratification biomarkers and clinical outcome prognosti�cators for bladder cancer patients. American Journal of Patholo�gy, 179(2), 540–546. doi:10.1016/j.ajpath.2011.05.009.


49. Lou, W., Krill, D., Dhir, R., Becich, M. J., Dong, J. T., Frierson, H. F., Jr., et al. (1999). Methylation of the CD44 metastasis suppressor gene in human prostate cancer. Cancer Research, 59 (10), 2329–2331.


50. Shi, J., Zhang, G., Yao, D., Liu, W., Wang, N., Ji, M., et al. (2012). Prognostic significance of aberrant gene methylation in gastric cancer. American Journal of Cancer Research, 2(1), 116–129.


51. Zhang, Z., Sun, D., Van do, N., Tang, A., Hu, L., & Huang, G. (2007). Inactivation of RASSF2A by promoter methylation cor�relates with lymph node metastasis in nasopharyngeal carcinoma. International Journal of Cancer, 120(1), 32–38. doi:10.1002/ ijc.22185.


52. Low, J. S., Tao, Q., Ng, K. M., Goh, H. K., Shu, X. S., Woo, W. L., et al. (2011). A novel isoform of the 8p22 tumor suppressor gene DLC1 suppresses tumor growth and is frequently silenced in multiple common tumors. Oncogene, 30(16), 1923–1935. doi:10.1038/onc.2010.576.


53. Kaminskyy, V. O., Surova, O. V., Vaculova, A., & Zhivotovsky, B. (2011). Combined inhibition of DNA methyltransferase and histone deacetylase restores caspase-8 expression and sensitizes SCLC cells to TRAIL. Carcinogenesis, 32(10), 1450–1458. doi:10.1093/carcin/bgr135.


54. Noske, A., Denkert, C., Schober, H., Sers, C., Zhumabayeva, B., Weichert, W., et al. (2005). Loss of Gelsolin expression in human ovarian carcinomas. European Journal of Cancer, 41(3), 461– 469. doi:10.1016/j.ejca.2004.10.025.


55. Kikuchi, R., Tsuda, H., Kanai, Y., Kasamatsu, T., Sengoku, K., Hirohashi, S., et al. (2007). Promoter hypermethylation contributes to frequent inactivation of a putative conditional tumor suppressor gene connective tissue growth factor in ovarian cancer. Cancer Research, 67(15), 7095–7105. doi:10.1158/0008-5472.CAN-06- 4567.


56. Sasahara, R. M., Brochado, S. M., Takahashi, C., Oh, J., Maria�Engler, S. S., Granjeiro, J. M., et al. (2002). Transcriptional control of the RECK metastasis/angiogenesis suppressor gene. Cancer Detection and Prevention, 26(6), 435–443.


57. Metge, B. J., Liu, S., Riker, A. I., Fodstad, O., Samant, R. S., & Shevde, L. A. (2010). Elevated osteopontin levels in metastatic melanoma correlate with epigenetic silencing of breast cancer metastasis suppressor 1. Oncology, 78(1), 75–86. doi:10.1159/ 000292363.


58. Aghdassi, A., Sendler, M., Guenther, A., Mayerle, J., Behn, C. O., Heidecke, C. D., et al. (2012). Recruitment of histone deace�tylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut, 61(3), 439–448. doi:10.1136/gutjnl-2011-300060.


59. Kim, H. R., Han, R. X., Diao, Y. F., Park, C. S., & Jin, D. I. (2011). Epigenetic characterization of the PBEF and TIMP-2 genes in the developing placentae of normal mice. BMB Reports, 44(8), 535–540.


60. Guan, R. J., Ford, H. L., Fu, Y., Li, Y., Shaw, L. M., & Pardee, A. B. (2000). Drg-1 as a differentiation-related, putative metastatic suppres�sor gene in human colon cancer. Cancer Research, 60(3), 749–755.


61. Mielnicki, L. M., Ying, A. M., Head, K. L., Asch, H. L., & Asch, B. B. (1999). Epigenetic regulation of gelsolin expression in human breast cancer cells. Experimental Cell Research, 249(1), 161–176. doi:10.1006/excr.1999.4461.


62. Qin, W., Zhu, W., Shi, H., Hewett, J. E., Ruhlen, R. L., MacDonald, R. S., et al. (2009). Soy isoflavones have an antiestrogenic effect and alter mammary promoter hypermethylation in healthy premenopausal women. Nutrition and Cancer, 61(2), 238–244. doi:10.1080/01635580802404196


63. Nagao, Y., Hisaoka, M., Matsuyama, A., Kanemitsu, S., Hamada, T., Fukuyama, T., et al. (2012). Association of microRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Modern Pathology, 25(1), 112–121. doi:10.1038/modpathol.2011.142.


64. Xu, Y., Zhao, F., Wang, Z., Song, Y., Luo, Y., Zhang, X., et al. (2012). MicroRNA-335 acts as a metastasis suppressor in gastric cancer by targeting Bcl-w and specificity protein 1. Oncogene, 31 (11), 1398–1407. doi:10.1038/onc.2011.340.


65. Song, B., Wang, C., Liu, J., Wang, X., Lv, L., Wei, L., et al. (2010). MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. Jour�nal of Experimental & Clinical Cancer Research, 29, 29. doi:10.1186/1756-9966-29-29.


66. Fabbri, M., & Calin, G. A. (2010). Epigenetics and miRNAs in human cancer. Advances in Genetics, 70, 87–99. doi:10.1016/ B978-0-12-380866-0.60004-6.


67. Shah, M. S., Schwartz, S. L., Zhao, C., Davidson, L. A., Zhou, B., Lupton, J. R., et al. (2011). Integrated microRNA and mRNA expression profiling in a rat colon carcinogenesis model: effect of a chemo-protective diet. Physiological Genomics, 43(10), 640– 654. doi:10.1152/physiolgenomics.00213.2010.


68. Ernst, A., Campos, B., Meier, J., Devens, F., Liesenberg, F., Wolter, M., et al. (2010). De-repression of CTGF via the miR- 17-92 cluster upon differentiation of human glioblastoma spher�oid cultures. Oncogene, 29(23), 3411–3422. doi:10.1038/ onc.2010.83.


69. Jazbutyte, V., & Thum, T. (2010). MicroRNA-21: from cancer to cardiovascular disease. Current Drug Targets, 11(8), 926–935.


70. Gabriely, G., Wurdinger, T., Kesari, S., Esau, C. C., Burchard, J., Linsley, P. S., et al. (2008). MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Molec�ular and Cellular Biology, 28(17), 5369–5380. doi:10.1128/ MCB.00479-08MCB.00479-08.


71. Grunder, E., D'Ambrosio, R., Fiaschetti, G., Abela, L., Arcaro, A., Zuzak, T., et al. (2011). MicroRNA-21 suppression impedes medulloblastoma cell migration. European Journal of Cancer, 47 (16), 2479–2490. doi:10.1016/j.ejca.2011.06.041.


72. Yang, C. H., Yue, J., Pfeffer, S. R., Handorf, C. R., & Pfeffer, L. M. (2011). MicroRNA miR-21 regulates the metastatic behavior of B16 melanoma cells. Journal of Biological Chemistry, 286 (45), 39172–39178. doi:10.1074/jbc.M111.285098.


73. Mudduluru, G., George-William, J. N., Muppala, S., Asangani, I. A., Kumarswamy, R., Nelson, L. D., et al. (2011). Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Bioscience Reports, 31(3), 185–197. doi:10.1042/BSR20100065.


74. Melkamu, T., Zhang, X., Tan, J., Zeng, Y., & Kassie, F. (2010). Alteration of microRNA expression in vinyl carbamate-induced mouse lung tumors and modulation by the chemopreventive agent indole-3-carbinol. Carcinogenesis, 31(2), 252–258. doi:10.1093/carcin/bgp208.


75. Kushiro, K., Chu, R. A., Verma, A., & Nunez, N. P. (2011). Adipocytes Promote B16BL6 Melanoma Cell Invasion and the Epithelial-to-Mesenchymal Transition. Cancer Microenviron�ment. doi:10.1007/s12307-011-0087-2.


76. Kushiro, K., & Nunez, N. P. (2011). Ob/ob serum promotes a mesenchymal cell phenotype in B16BL6 melanoma cells. Clini�cal & Experimental Metastasis, 28(8), 877–886. doi:10.1007/ s10585-011-9418-4.


77. Jiang, W. G., Hiscox, S., Bryce, R. P., Horrobin, D. F., & Mansel, R. E. (1998). The effects of n-6 polyunsaturated fatty acids on the expression of nm-23 in human cancer cells. British Journal of Cancer, 77(5), 731–738


78. Yang, Y. M., Chen, B. Q., Zheng, Y. M., Wang, X. L., Liu, J. R., Xue, Y. B., et al. (2003). The effects of conjugated linoleic acid on the expression of invasiveness and metastasis-associated gene of human gastric carcinoma cell line. Zhonghua Yu Fang Yi Xue Za Zhi, 37(1), 26–28.


79. Mandal, C. C., Ghosh-Choudhury, T., Yoneda, T., Choudhury, G. G., & Ghosh-Choudhury, N. (2010). Fish oil prevents breast cancer cell metastasis to bone. Biochemical and Biophysical Research Communications, 402(4), 602–607. doi:10.1016/j. bbrc.2010.10.063.


80. Dimri, M., Bommi, P. V., Sahasrabuddhe, A. A., Khandekar, J. D., & Dimri, G. P. (2010). Dietary omega-3 polyunsaturated fatty acids suppress expression of EZH2 in breast cancer cells. Carci�nogenesis, 31(3), 489–495. doi:10.1093/carcin/bgp305.


81. Joseph, J., Mudduluru, G., Antony, S., Vashistha, S., Ajitkumar, P., & Somasundaram, K. (2004). Expression profiling of sodium bu�tyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Onco�gene, 23(37), 6304–6315. doi:10.1038/sj.onc.12078521207852.


82. Butt, A. J., Hague, A., & Paraskeva, C. (1997). Butyrate- but not TGFbeta1-induced apoptosis of colorectal adenoma cells is asso�ciated with increased expression of the differentiation markers E-cadherin and alkaline phosphatase. Cell Death and Differenti�ation, 4(8), 725–732. doi:10.1038/sj.cdd.4400293.


83. Palmer, H. G., Gonzalez-Sancho, J. M., Espada, J., Berciano, M. T., Puig, I., Baulida, J., et al. (2001). Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E�cadherin and the inhibition of beta-catenin signaling. The Journal of Cell Biology, 154(2), 369–387.


84. So, J. Y., Lee, H. J., Smolarek, A. K., Paul, S., Wang, C. X., Maehr, H., et al. (2011). A novel Gemini vitamin D analog represses the expression of a stem cell marker CD44 in breast cancer. Molecular Pharmacology, 79(3), 360–367. doi:10.1124/ mol.110.068403.


85. Liu, H. K., Wang, Q., Li, Y., Sun, W. G., Liu, J. R., Yang, Y. M., et al. (2010). Inhibitory effects of gamma-tocotrienol on invasion and metastasis of human gastric adenocarcinoma SGC-7901 cells. The Journal of Nutritional Biochemistry, 21(3), 206–213. doi:10.1016/j.jnutbio.2008.11.004.


86. Hellmann, J., Rommelspacher, H., & Wernicke, C. (2009). Long-term ethanol exposure impairs neuronal differentiation of human neuroblastoma cells involving neurotrophin�mediated intracellular signaling and in particular protein ki�nase C. Alcoholism, Clinical and Experimental Research, 33 (3), 538–550. doi:10.1111/j.1530-0277.2008.00867.x.


87. King, M. L., & Murphy, L. L. (2007). American ginseng (Panax quinquefolius L.) extract alters mitogen-activated pro�tein kinase cell signaling and inhibits proliferation of MCF-7 cells. Journal of Experimental Therapeutics and Oncology, 6 (2), 147–155.


88. Shah, D. C., Jais, P., Haissaguerre, M., Takahashi, A., & Clementy, J. (1997). Negative lead I P waves during anteroseptal accessory pathway orthodromic reciprocating tachycardia. The American Journal of Cardiology, 80(2), 227–229.


89. Zhou, Q., Yan, B., Hu, X., Li, X. B., Zhang, J., & Fang, J. (2009). Luteolin inhibits invasion of prostate cancer PC3 cells through E�cadherin. Molecular Cancer Therapeutics, 8(6), 1684–1691. doi:10.1158/1535-7163.MCT-09-0191.


90. Yang, S. F., Yang, W. E., Kuo, W. H., Chang, H. R., Chu, S. C., & Hsieh, Y. S. (2008). Antimetastatic potentials of flavones on oral cancer cell via an inhibition of matrix-degrading proteases. Archives of Oral Biology, 53(3), 287–294. doi:10.1016/j. archoralbio.2007.09.001.


91. Kim, J. E., Kwon, J. Y., Lee, D. E., Kang, N. J., Heo, Y. S., Lee, K. W., et al. (2009). MKK4 is a novel target for the inhibition of tumor necrosis factor-alpha-induced vascular endothelial growth factor expression by myricetin. Biochemical Pharmacology, 77 (3), 412–421. doi:10.1016/j.bcp.2008.10.027


92. Herzog, A., Kindermann, B., Doring, F., Daniel, H., & Wenzel, U. (2004). Pleiotropic molecular effects of the pro-apoptotic dietary constituent flavone in human colon cancer cells identified by protein and mRNA expression profiling. Proteomics, 4(8), 2455–2464. doi:10.1002/pmic.200300754.


93. Ullmannova, V., & Popescu, N. C. (2007). Inhibition of cell proliferation, induction of apoptosis, reactivation of DLC1, and modulation of other gene expression by dietary flavone in breast cancer cell lines. Cancer Detection and Prevention, 31(2), 11011–11018. doi:10.1016/j.cdp.2007.02.005.


94. El Touny, L. H., & Banerjee, P. P. (2007). Genistein induces the metastasis suppressor kangai-1 which mediates its anti-invasive effects in TRAMP cancer cells. Biochemical and Biophysical Research Communications, 361(1), 169–175. doi:10.1016/j. bbrc.2007.07.010.


95. Bao, B., Wang, Z., Ali, S., Kong, D., Li, Y., Ahmad, A., et al. (2011). Notch-1 induces epithelial-mesenchymal transition con�sistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Letters, 307(1), 26–36. doi:10.1016/j.canlet.2011.03.012.


96. Deep, G., Gangar, S. C., Agarwal, C., & Agarwal, R. (2011). Role of E-cadherin in antimigratory and antiinvasive efficacy of silibinin in prostate cancer cells. Cancer Prevention Research (Philadelphia, Pa.), 4(8), 1222–1232. doi:10.1158/1940-6207. CAPR-10-0370.


97. Kim, S., Han, J., Kim, J. S., Kim, J. H., Choe, J. H., Yang, J. H., et al. (2011). Silibinin Suppresses EGFR Ligand-induced CD44 Expression through Inhibition of EGFR Activity in Breast Cancer Cells. Anticancer Research, 31(11), 3767–3773.


98. Chen, P. N., Hsieh, Y. S., Chiang, C. L., Chiou, H. L., Yang, S. F., & Chu, S. C. (2006). Silibinin inhibits invasion of oral cancer cells by suppressing the MAPK pathway. Journal of Dental Research, 85(3), 220–225.


99. Chu, S. C., Chiou, H. L., Chen, P. N., Yang, S. F., & Hsieh, Y. S. (2004). Silibinin inhibits the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2. Molecular Carcinogenesis, 40 (3), 143–149. doi:10.1002/mc.20018.


100. Momeny, M., Khorramizadeh, M. R., Ghaffari, S. H., Yousefi, M., Yekaninejad, M. S., Esmaeili, R., et al. (2008). Effects of silibinin on cell growth and invasive properties of a human hepatocellular carcinoma cell line, HepG-2, through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Eu�ropean Journal of Pharmacology, 591(1–3), 13–20. doi:10.1016/ j.ejphar.2008.06.011.


101. Kwon, G. T., Cho, H. J., Chung, W. Y., Park, K. K., Moon, A., & Park, J. H. (2009). Isoliquiritigenin inhibits migration and inva�sion of prostate cancer cells: possible mediation by decreased JNK/AP-1 signaling. The Journal of Nutritional Biochemistry, 20(9), 663–676. doi:10.1016/j.jnutbio.2008.06.005.


102. Meng, Q., Qi, M., Chen, D. Z., Yuan, R., Goldberg, I. D., Rosen, E. M., et al. (2000). Suppression of breast cancer invasion and migration by indole-3-carbinol: associated with up-regulation of BRCA1 and E-cadherin/catenin complexes. Journal of Molecular Medicine (Berlin), 78(3), 155–165.


103. Huang, C. S., Shih, M. K., Chuang, C. H., & Hu, M. L. (2005). Lycopene inhibits cell migration and invasion and upregulates Nm23-H1 in a highly invasive hepatocarcinoma, SK-Hep-1 cells. Journal of Nutrition, 135(9), 2119–2123.


104. Choo, E. J., Rhee, Y. H., Jeong, S. J., Lee, H. J., Kim, H. S., Ko, H. S., et al. (2011). Anethole exerts antimetatstaic activity via inhibition of matrix metalloproteinase 2/9 and AKT/mitogen-activated kinase/nuclear factor kappa B signal�ing pathways. Biological and Pharmaceutical Bulletin, 34(1), 41–46


105. Farabegoli, F., Papi, A., & Orlandi, M. (2011). (-)-Epigallocate�chin-3-gallate down-regulates EGFR, MMP-2, MMP-9 and EMMPRIN and inhibits the invasion of MCF-7 tamoxifen�resistant cells. Bioscience Reports, 31(2), 99–108. doi:10.1042/ BSR20090143.


106. Hsu, Y. C., & Liou, Y. M. (2011). The anti-cancer effects of (-)- epigallocatechin-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. Journal of Cellular Physiology, 226(10), 2721–2730. doi:10.1002/jcp.22623.


107. O'Connell, M. A., & Rushworth, S. A. (2008). Curcumin: poten�tial for hepatic fibrosis therapy? British Journal of Pharmacolo�gy, 153(3), 403–405. doi:10.1038/sj.bjp.0707580.


108. Ray, S., Chattopadhyay, N., Mitra, A., Siddiqi, M., & Chatterjee, A. (2003). Curcumin exhibits antimetastatic properties by modu�lating integrin receptors, collagenase activity, and expression of Nm23 and E-cadherin. Journal of Environmental Pathology, Toxicology and Oncology, 22(1), 49–58.


109. Yan, C., Jamaluddin, M. S., Aggarwal, B., Myers, J., & Boyd, D. D. (2005). Gene expression profiling identifies activating tran�scription factor 3 as a novel contributor to the proapoptotic effect of curcumin. Molecular Cancer Therapeutics, 4(2), 233–241.


110. Lin, H. J., Su, C. C., Lu, H. F., Yang, J. S., Hsu, S. C., Ip, S. W., et al. (2010). Curcumin blocks migration and invasion of mouse-rat hybrid retina ganglion cells (N18) through the inhibition of MMP-2, -9, FAK, Rho A and Rock-1 gene expression. Oncology Reports, 23(3), 665–670.


111. Wang, L., Alcon, A., Yuan, H., Ho, J., Li, Q. J., & Martins-Green, M. (2011). Cellular and molecular mechanisms of pomegranate juice-induced anti-metastatic effect on prostate cancer cells. Inte�grated Biology (Camb), 3(7), 742–754. doi:10.1039/c0ib00122h.


112. Huijzer, J. C., McFarland, M., Niles, R. M., & Meadows, G. G. (1996). Phorbol 12-myristate 13-acetate enhances nm23 gene expression in murine melanocytes but not in syngeneic B16- BL6 melanoma variants. Journal of Cellular Physiology, 166 (3), 487–494. doi:10.1002/(SICI)1097-4652(199603) 166:3<487::AID-JCP3>3.0.CO;2-L.


113. Krahenbuhl, S., & Reichen, J. (1992). Adaptation of mitochon�drial metabolism in liver cirrhosis. Different strategies to maintain a vital function. Scandinavian Journal of Gastroenterology – Supplement, 193, 90–96.


114. Nagothu, K. K., Jaszewski, R., Moragoda, L., Rishi, A. K., Finkenauer, R., Tobi, M., et al. (2003). Folic acid mediated attenuation of loss of heterozygosity of DCC tumor suppressor gene in the colonic mucosa of patients with colorectal adenomas. Cancer Detection and Prevention, 27(4), 297–304.


115. Wang, J., Betancourt, A. M., Mobley, J. A., & Lamartiniere, C. A. (2011). Proteomic discovery of genistein action in the rat mam�mary gland. Journal of Proteome Research, 10(4), 1621–1631. doi:10.1021/pr100974w.


116. Singh, R. P., Raina, K., Sharma, G., & Agarwal, R. (2008). Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial-mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clinical Cancer Research, 14 (23), 7773–7780. doi:10.1158/1078-0432.CCR-08-1309.


117. Kim, E. J., Shin, M., Park, H., Hong, J. E., Shin, H. K., Kim, J., et al. (2009). Oral administration of 3,3′-diindolylmethane inhibits lung metastasis of 4 T1 murine mammary carcinoma cells in BALB/c mice. Journal of Nutrition, 139(12), 2373–2379. doi:10.3945/jn.109.111864.


118. Huang, C. S., Liao, J. W., & Hu, M. L. (2008). Lycopene inhibits experimental metastasis of human hepatoma SK-Hep-1 cells in athymic nude mice. Journal of Nutrition, 138(3), 538– 543.